Search results

1 – 1 of 1
Article
Publication date: 19 May 2021

HamidReza Tamaddon Jahromi, Samuel Rolland, Jason Jones, Alberto Coccarelli, Igor Sazonov, Chris Kershaw, Chedly Tizaoui, Peter Holliman, David Worsley, Hywel Thomas and Perumal Nithiarasu

A novel modelling approach is proposed to study ozone distribution and destruction in indoor spaces. The level of ozone gas concentration in the air, confined within an indoor…

Abstract

Purpose

A novel modelling approach is proposed to study ozone distribution and destruction in indoor spaces. The level of ozone gas concentration in the air, confined within an indoor space during an ozone-based disinfection process, is analysed. The purpose of this work is to investigate how ozone is distributed in time within an enclosed space.

Design/methodology/approach

A computational methodology for predicting the space- and time-dependent ozone concentration within the room across the consecutive steps of the disinfection process (generation, dwelling and destruction modes) is proposed. The emission and removal of ozone from the air volume are possible by means of a generator located in the middle of the room. This model also accounts for ozone reactions and decay kinetics, and gravity effect on the air.

Finding

This work is validated against experimental measurements at different locations in the room during the disinfection cycle. The numerical results are in good agreement with the experimental data. This comparison proves that the presented methodology is able to provide accurate predictions of the time evolution of ozone concentration at different locations of the enclosed space.

Originality/value

This study introduces a novel computational methodology describing solute transport by turbulent flow for predicting the level of ozone concentration within a closed room during a COVID-19 disinfection process. A parametric study is carried out to evaluate the impact of system settings on the time variation of ozone concentration within the space considered.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 1 of 1